ROyWeb Documentation
Release 0.9.1

Tamas Gal

March 18, 2015

Contents

1 Getting the latest version 1
2 Installing dependencies 3
2.1 Setting up an independent Python environment via virtualenv 3
2.2 Easier sandboxing via virtualenvwrapperol e e e e 3
2.3 Installing the dependencies when using the source 4
3 Using ROyWeb 5
3.1 Integrate ROyWeb into your project o o v v ittt i e e e e 5
3.2 JSONmessage format v i v v i e e e e e e e e e e e e e e e e e e e 5
4 API Documentation 7
4.1 Module networking e e e e e e e e e e e e e e 7
4.2 Module webhandler e e e e 7
5 royweb 9
6 Future Plans 11
6.1 Documentation e e e e e e e e e e 11
6.2 LiveDemo e 11
6.3 Installation e e e 11
6.4 SIMPleusage e e e e e e e e e e e 11
6.5 Sendtestdata. e e 12
6.6 Integrate ROyWeb into your project it it e e e e e e 12
7 Indices and tables 13
Python Module Index 15

CHAPTER 1

Getting the latest version

The original git-repository is on GitHub: https://github.com/tamasgal/royweb

http://github.com
https://github.com/tamasgal/royweb

ROyWeb Documentation, Release 0.9.1

2 Chapter 1. Getting the latest version

CHAPTER 2

Installing dependencies

ROyWeb is based on Python and needs two additional libraries: Tornado and daemon.

2.1 Setting up an independent Python environment via virtualenv

The easiest way to set up a working environment is to install virtualenv first (if not already installed). Grab the latest
version via:

curl -0 https://pypi.python.org/packages/source/v/virtualenv/virtualenv-X.X.tar.gz
tar xvfz virtualenv-X.X.tar.gz

cd virtualenv-X.X

python virtualenv.py royweb

This will install a freshly new configured python in its own directory within the virtualenv folder. From now on, you
can simply activate the virtual environment via:

cd royweb
source bin/activate

and mess around with it. Btw. I recommend having a look at virtualenvwrapper, which is a great addition to the
already awesome virtualenv tool.

2.2 Easier sandboxing via virtualenvwrapper

As I already wrote, I recommend virtualenvwrapper to manage your Python environments, which of course
you can install via pip:

pip install virtualenvwrapper

And then follow the instructions to setup your virtualenvwrapper environment. It is very simple, you only have to put
a line into your shell startup script (.bashrc or whatever) and define a working directory and another directory to
store your virtual envorionments. After that, the workflow to create an independent Python environment is:

mkproject royweb
pip install royweb

To exit the environment simply type:

deactivate

http://www.tornadoweb.org
http://virtualenv.readthedocs.org/en/latest/virtualenv.html#installation
http://virtualenvwrapper.readthedocs.org/en/latest/

ROyWeb Documentation, Release 0.9.1

And to switch back anytime, use the workon command:

workon royweb

This way you can create a bunch of virtual envrionemnts which are completely clean and independent from each other.

2.3 Installing the dependencies when using the source

If you want to work on the develeopment version, you’ll need to install Tornado and daemon. This is easy as pip is:

pip install tornado
pip install daemon

You can also use the requirements. txt file to install all dependencies automatically:

pip install -r requirements.txt

From now on, every time you want to start a ROyWeb server, activate the virtual environment and you’re ready to go.

4 Chapter 2. Installing dependencies

CHAPTER 3

Using ROyWeb

3.1 Integrate ROyWeb into your project

There is a class PacketHandler, which can be used to create and send JSON UDP packets with the required format.
If you want to monitor some values in your projects, initialise a PacketHandler and use its send () method to
transfer the values. Here is an example:

from royweb import PacketHandler
ph = PacketHandler ("127.0.0.1", 9999)
ph.send(’ foo’, 23, 'This is a description’)

That’s it ;-)

3.2 JSON message format

The UDP packet which contains the data to plot later on should only include a stringified JSON dump in its UDP data
field. The required JSON structure is:

{
"kind’ : ’parameter’,
"type’: "parameter_short_name’,
"unit’: ’"desired_unit’,
"description’: 'This is a longer description of the parameter.’,
"value’ : "the_value’

}

The kind field is required and should always be "parameter" (ROyWeb uses the same JSON format for other
“kinds” communications). The value can be of any type, but it will actually determine which types of graphs you
can plot later on. For TimePlots, Histograms and Equalisers, simply use a st ring for example, it will be
converted to float on the fly.

ROyWeb Documentation, Release 0.9.1

6 Chapter 3. Using ROyWeb

CHAPTER 4

API Documentation

4.1 Module networking

Networking stuff for UDP and WebSocket communication.

class royweb.networking.PacketHandler (ip, port)
A reusable packet handler, which can send parameters via UDP.

json_message (parameter_type, value, unit, description)
Create a json dump.

send (parameter_type, value, unit, description)
Send a parameter with value and description to a ROyWeb

class royweb.networking.WebSocketBroadcaster (server, port, clients)
Receives data from UDP and redistributes them via WebSockets.

run ()
Listen for UDP packets and immediately send them to the clients.

stop ()
Stop the port listener.

with_timestamp (json_obj)
Returns a copy of a json obj with an additional time property.

4.2 Module webhandler

Tornado WebHandler.

class royweb.webhandler .MainHandler (application, request, **kwargs)
The main request handler for ROyWeb

class royweb.webhandler .EchoWebSocket (*args, **kwargs)
An echo handler for client/server messaging and debugging

send_json_message (fext)
Convert message to json and send it to the clients

class royweb.webhandler.NoCacheStaticFileHandler (application, request, **kwargs)
A static file handler without caching.

class royweb.webhandler.UnitTests (application, request, **kwargs)
The unit test page

ROyWeb Documentation, Release 0.9.1

class royweb.webhandler.SpecTests (application, request, **kwargs)
The specs page

8 Chapter 4. APl Documentation

CHAPTER 5

royweb

Restless Oyster Web is an online monitoring tool. It provides a graphical user interface which can be accessed by
any WebSocket-capable web browser. Although it’s designed for the KM3NeT neutrino detector, it provides a simple
interface to let you monitor other kinds of parameters. The current status is beta and is already used by many people.
Thanks for you feedback so far!

ROyWeb Documentation, Release 0.9.1

10 Chapter 5. royweb

CHAPTER 6

Future Plans

The main goal is to create a tool which runs a web interface and monitors several types of parameters sent via UDP
packets. The visualisation of the data is done by the d3.js framework and the parameters are sent as JSON objects.
Monitoring a specific parameter should be as easy as sending a JSON object through UDP to the webserver. Any
connected client should then receive the packet and the user will be able to create live graphs or histograms with the
desired parameters.

Feel free to contribute or join; any kind of feedback is welcome!

6.1 Documentation

Read the docs at http://royweb.readthedocs.org

6.2 Live Demo

A very basic demonstration can be seen at http://royweb.km3net.de Please note that the server is not always running
the latest build.

6.3 Installation

I highly recommend using virtualenv for any Python related experiments.
After you set up a seperate virtual environment, use pip to install the latest release:

pip install royweb

This will automatically install all dependencies and scripts. Of course, you can also download the source and discover
the code on your own.

6.4 Simple usage

If you installed royweb via pip, you can use the royweb script to start the web server with the default configuration.
Otherwise, simply take the royweb . py in the royweb package. The server will listen to incoming client connections
on port 8080 and start a UDP-listener on port 9999 for parameter monitoring:

11

http://royweb.readthedocs.org
http://royweb.km3net.de
http://virtualenv.readthedocs.org

ROyWeb Documentation, Release 0.9.1

royweb

Starting ROyWeb with PID 25674
Running on 127.0.0.1:8080

Listening for UDP data on port 9999

6.5 Send test data

To send some live test data to the web server, run royweb_tester (if installed via pip) or the send_udp.py
script. This will generate some random parameters and distributes them via UDP to the default port 9999 on localhost:

royweb_tester
UDP target IP: 127.0.0.1
UDP target port: 9999

Open your browser and navigate to http://127.0.0.1:8080 to see the live parameter logging.

6.6 Integrate ROyWeb into your project

There is a class PacketHandler, which can be used to create and send JSON UDP packets with the required format.
If you want to monitor some values in your projects, initialise a PacketHandler and use its send () method to
transfer the values. Here is an example:

from royweb import PacketHandler
ph = PacketHandler("127.0.0.1", 9999)
ph.send(’ foo’, 23, 'This is a description’)

That’s it ;-)

12 Chapter 6. Future Plans

http://127.0.0.1:8080

CHAPTER 7

Indices and tables

* genindex
* modindex

e search

13

ROyWeb Documentation, Release 0.9.1

14 Chapter 7. Indices and tables

Python Module Index

r

royweb.networking, 7
royweb.webhandler, 7

15

ROyWeb Documentation, Release 0.9.1

16 Python Module Index

Index

E

EchoWebSocket (class in royweb.webhandler), 7

J

json_message() (royweb.networking.PacketHandler
method), 7

M

MainHandler (class in royweb.webhandler), 7

N

NoCacheStaticFileHandler (class in royweb.webhandler),
7

P

PacketHandler (class in royweb.networking), 7

R

royweb.networking (module), 7

royweb.webhandler (module), 7

run() (royweb.networking. WebSocketBroadcaster
method), 7

S

send() (royweb.networking.PacketHandler method), 7

send_json_message() (roy-
web.webhandler.EchoWebSocket method),
7

SpecTests (class in royweb.webhandler), 8

stop() (royweb.networking. WebSocketBroadcaster
method), 7

U

UnitTests (class in royweb.webhandler), 7

W

WebSocketBroadcaster (class in royweb.networking), 7

with_timestamp() (roy-
web.networking. WebSocketBroadcaster
method), 7

17

	Getting the latest version
	Installing dependencies
	Setting up an independent Python environment via virtualenv
	Easier sandboxing via virtualenvwrapper
	Installing the dependencies when using the source

	Using ROyWeb
	Integrate ROyWeb into your project
	JSON message format

	API Documentation
	Module networking
	Module webhandler

	royweb
	Future Plans
	Documentation
	Live Demo
	Installation
	Simple usage
	Send test data
	Integrate ROyWeb into your project

	Indices and tables
	Python Module Index

